

New method to measure CCC (Current Carrying Capability) of thin probe wire

Probe Innovation USA President Tadashi Rokkaku

June 4-7, 2017

1. Outline

1.1. General Definition of CCC :

Current in wire at definite temperature difference between wire and atmosphere

1.2. Conventional CCC measurement standard

Difficulty in measuring temperature of thin wire.

Thermocouple : Area size is too large for thin wire. ⇒ Error in heat radiation is too large.

Figure 1-1 Illustration of Heat Radiation from Thermocople

Thin Wire

Thermocouple

Heat Radiation

(too large)

Current

SW Test Workshop | June 4-7,2017

Author Tadashi Rokkaku

Table 1-1 CCC evaluation standard (ISMI CCC)

Electric Current	1.2 A	1.25 A	1.3 A	1.35 A	Standard
Force Reduction rate	0 %	11 %	19 %	27 %	15 % down
Depress	13 μ	14 μ	15 μ	20 μ	15 μ
ССС	Pass	Pass	Fail	Fail	

CCC : Maximum Current before softening due to temperature rise

Very practical and useful, but no temperature related information

SW Test Workshop | June 4-7,2017

Author Tadashi Rokkaku

Figure 1-2 Illustration of New Method to measure Temperature of Thin Wire

Author Tadashi Rokkaku

(2) CCC Basic theory has been verified. (3) Sample of Measured CCC order : (Wire Diameter = 63 μ)

 1. Rhodeo6
 2. Beryllium Copper (BeCu)
 3. Rhenium Tungsten (ReW)
 4. Paliney H3C

80.0 100.0 120.0 140.0 160.0 180.0 200.0 Temperature Difference $\Delta T = Tw - Tr$ (°C) Tw : Wire Temperature Tr : Room Temperature Figure 1-3 Sample of Measured CCC

1.4. New Discoveries through Experiments

Thinking of Solder Capped Cu-Pillar, availability of each probe material was checked. Through additional two tests new discoveries were made.

Test for Wet Property to solder
 Electric Discharge Test

Figure 1-4 Illustration of Solder Capped Cu-Pillar

2. Basic Theory of CCC

2.1. Heat generation of conductor H = UL= L* I^2*R ---(2-1) 2.2. Heat radiation of conductor q = h * S * (Ts <u>-</u> To) -----(2-2) **2.3. Heat Balance** H = qAnd set $S = L * \pi * d$ Then (2-3) is obtained In next page.

Table 2-1 Symbols and contents

Symbol	Name	Dimension
Н	Total heat generation	W
L	Length of heat radiation object	m
U	Heat generation per unit length	W/m
	Current	Α
R	Resistance per unit length	Ohm/m
ρ	Resistivity of conductor material	Ohm•m
q	Heat Flow	W
h	Heat transfer rate	W/m^2/°C
S	Area of heat radiation object	m^2
d	Diameter of heat radiation object	m
Α	Area of conductor cross section	m^2
Ts	Surface temperature of object	К
То	Neighboring temperature	К

SW Test Workshop | June 4-7,2017

Author Tadashi Rokkaku

7

Conductor resistance = $R * L = \rho * L/A$ Therefore Resistance per unit length

 $R = \rho / A = 4 * \rho / (\pi * d^2)$ -----(2-4)

Substituting equation (2-4) into equation (2-3), equation (2-5) is obtained.

 $I = \sqrt{h * \pi * d * (Ts - To) / R}$

 $=\pi * \sqrt{h^* d^3 * (Ts - T0) / (4\rho)}$ ------ (2-5)

SW Test Workshop | June 4-7,2017

Author Tadashi Rokkaku

(2) Materials Applied to the test :

Wire Materials :

Rhodeo6, Beryllium Copper (BeCu), Rhenium Tungsten (ReW), and Paliney H3C (H3C)

Wire Diameter : 2.5 mils (63 μ)

Wire Length : CCC Test : 100 mm and 150 mm Current Resistance Test : 50 mm

Author Tadashi Rokkaku

(c) CCC (Wire = 2.5 mils, Length = 100 mm)

13

6. New Discoveries through Experiments

Thinking of Solder Capped Cu-Pillar, availability of each probe material was checked. Through following additional two tests, new discoveries were made. 1) Test for Wet Property to solder related to affinity with solder and cleaning frequency. **2) Electric Discharge Test**

Figure 6-1 Illustration of Solder Capped Cu-Pillar

6.1. Test for Wet Property to solder : Solder Rubbing Test

Figure 6-2 Illustration of Solder Rubbing Test Sn/Ag solder of following contents was used :Sn 96.5%, Ag 3.5%

Table 6-1 Tip Appearance after Solder Rubbing Test

	Appearance Photo	Property	Comment
Rhodeo6		Non-Wet	
Rhenium Tungsten	Contraction of the second s	Non-Wet	
BeCu		Wet	BeCu showed Wet Property. H3C showed Heavy-Wet Property and high affinity with solder due to Silver
НЗС		Heavy -Wet	which is contained both in H3C and solder. Through repeated contacts with solder, oxidized solder debris may easily adhere to probe tip of H3C.

Author Tadashi Rokkaku

6.2. Electric Discharge Test

This test can be another new CCC evaluation method.

Figure 6-3 Illustration of Electric Discharge Model

(1) Case 1 : (No Solder Cap) (2) Case 2 : (With Solder Cap) Figure 6-4 Illustration of Electric Discharge Test

 Table 6-2 Ingredient of Cream Solder

Sn	Ag	Cu	Flux
84.9 ~ 88.8 %	2.8 %	0.3 ~ 0.4 %	8 ~ 12 %

The contact resistance with solder surface was very high, and it was necessary to shift the tip contact condition to increase contact force enough to break oxidation film on solder surface.

Author Tadashi Rokkaku

Voltage / Current before Discharge

Case 1: (No Solder Cap)

Author Tadashi Rokkaku

Case 2 : (With Solder Cap)

Table 6-	Table 6-3 Tip Appearance before and after Discharge (Case 1)			
	Before	After Discharge	Damage	
Rhodeo6			No Damage	
BeCu			Oxidized & Color Changed	
Rhenium Tungsten			Heavily Oxidized & Charred	
H3C			Melted & Bent	

Author Tadashi Rokkaku

Table 6-4 Tip Appearance before and after Discharge (Case 2)

	Before	After Discharge	Damage
Rhodeo6	Kentral Andrew Constant of Con	mage at tip Black stains of burnt dirt	No Damage
BeCu			Oxidized at Tip End
Rhenium Tungsten			Heavily Oxidized
НЗС			Heavily Oxidized

Author Tadashi Rokkaku

Table 6-5 Solder Surface Appearance before & after Discharge (Case 2)				
	Before	After Discharge	Damage	
Rhodeo6, BeCu	No significant difference between before and after discharge.		No Damage	
Rhenium Tungsten			Lack Hole	
НЗС			Lack Hole	
Author Tadashi Rokkaku	SW Test Workshop	June 4-7,2017	25	

7. Summary

- 7.1. New method to measure CCC of thin wire has been confirmed.
- 7.2. CCC Measurement results by thin foil melting method:
 - 1) Order of CCC Rhodeo6 > Beryllium Copper > Rhenium Tungsten > Paliney H3C
 - 2) As current increased, Beryllium Copper and Paliney H3C seemed to have softened, resulting in lower available CCC.
 - 3) Basic Theory of CCC has been verified.

7.3. New Discoveries through experiments :

[1] Test for Wet Property to Solder

Figure 7-1 Summary for Test of Wet Property to Solder

Author Tadashi Rokkaku

[2] Electric Discharge Test

 Electric Discharge is generated through Contact Resistance.
 The larger the Contact Resistance, the larger the Discharge Energy, and the larger the Damage to Probe Tip and Solder Cap.

Rhodeo6 showed highest current before discharge, showing no damage after discharge.
Rhodeo6 showed lowest electric resistance, including low contact resistance.

Figure 7-2 Summary for Electric Discharge Test

Author Tadashi Rokkaku

7.4. Comparison of CCC Measurement Methods

Table 7-1 Comparison of CCC Measurement Methods

Method	Judgement Standard	Suitable Object
ISMI CCC	Force Reduction Rate Depress	Probe
1 st New Method Foil melting method	Temperature Difference	Probe Material
2 nd New Method Discharge Method	Current Before Electric Discharge	Probe and Probe Material

7.5. Performance Comparison of Probe Materials

Table 7-2 Performance Comparison between Rhodeo6 and other materials

Material	Affinity with Solder	Oxide	Cleaning Frequency	Maximum Current before Softening or Discharge to Solder Cap	Damage on Tip or Solder Cap after Discharge
Rhodeo6	Low Non-Abra	No Oxide sive Cleaning Ge	Low 900 mA I is available.		No Damage on both Tip and Solder Cap
Rhenium Tungsten	Low	Heavily Oxidized	High Abrasive	600 mA	Tip Oxidized Lack on Solder
BeCu	High	Fasily	Cleaning Gel or	BeCu : 500 mA	BeCu : Tip Oxidized
НЗС	Very High	Oxidized	Sheet is required.	H3C : 600 mA	H3C : Tip Oxidized, Lack on Solder
Author Tadashi Rokkaku SW Test Workshop J June 4-7 2017 30					

8. Acknowledgement

Photo			
Name	Mr. Nobuo Iwakuni	Mr. John Sterrett	
Company	Assisted as a private position	Specialty Coating Systems	
Location	Hiroshima, Japan	USA	
Content of assist	Support to the experiment	Great Help in coating for sample development	
Author Tadashi Rokkaku SW Test Workshop June 4-7,2017 37			